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1. INTRODUCTION

The problem of numerical grid generation is of current interest in many

branches of engineering particularly in aeronautics, mechanical, and civil

engineering. The spatial grids are generated either by algebraic methods

using varicus spline and transfinite interpolations or by solving certain

partial differential equations. In this regard, a book [i], review articles

[2], [3], and conference proceedings [4, 5, 6] may be consulted.

The research accomplishments noted herein are in reference to the

problem of grid generation in a given surface by solving a set of elliptic

partial differential equations. The mathematical model used in the present

research has been developed by the author under this and previous AFOSR

grants and has been described in publications [7 - 16]. Reference [16] has

been attached as an appendix in which Eqs. (19) and (21) describe the mathe-

matical model.

The developed mathematical model has been used to generate the Car-

tesian coordinates as functions of the curvilinear coordinates when the

surface in which the coordinates are to be generated has been specified

either analytically or by discrete data points. In most practical situa-

tions the surface is usually specified by discrete data, and therefore,

there was a need to develop computer routines to fit a global equation of

the form F(x,y,z) = 0 to describe the surface. For complicated body shapes

e.g. an airplane, a segmentation technique has been used in which the

surface is divided into suitable sections and then for each segment the

function is separately generated. The need for specifying the function F is

due to the fact that the forcing term R in Eqs. (19) or (21) of the appendix

is obtained from F. In the period under consideration we have devised vari-
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ous routines for the above noted purpose and they are described in Section

2. The developed computer code has been used in many complicated shaped

surfaces. Figure 1 shows some current results. Other results are available

in the published cited references.

2. NUMERICAL SCHEMES

A computer program for the numerical solution of Eq. (21) has been

developed by using point and line SOR. The essential difference between the

grid generation in a flat space and in a curved surface is in the appearance

of the forcing term on the right of Eqs. (19) and (21). The term R in Eqs.

(19) and (21) depends on the first and second partial derivatives of the

fitted function F with respect to the Cartesian coordinates. (Refer to [151

for the formula of R in terms of F). The following routines have been

developed and used in a variety of problems.

1. Multidimensional least square technique.

2. "Overlapping' least square technique.

3. Fourier decomposition of each section of a surface and then

blending them to obtain the equation of a surface.

Beside the development of the above techniques, we have also developed

the following two separate programs in the solution of Eq. (21).

1. For the acceleration of the iterative process, a "multigrid" tech-

nique in the solution of Eq. (21) has been incorporated. From the

test cases conducted so far it looks that the computation time with

multigrid is definitely much lower than with ordinary SOR. At the

time of the progress report in Agusut 1987, these results were not

2
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definite. The application of the multigrid technique in the solu-

tion of the surface grid equations seems to be the first attempt of

its kind.

2. A routine for the calculation of the optimum acceleration parameter

has been developed which works quite well with the SOR technique.

2 3. CONCLUSIONS

The problem of numerical coordinate generation in arbitrary surfaces

has been addressed by first developing a mathematical model as formed of a

set of elliptic PDE's and then solving the proposed equations numerically.

The proposed mathematical model has deliberately been made to depend on the

formulae of Gauss which involve the partial derivatives of the Cartesian

coordinates with respect to the curvilinear coordinates. With the formulae

of Gauss as the basis for the proposed elliptic equations, it is logical to

conclude that on solution the generated Cartesian coordinates will be second

order differentiable with respect to the curvilinear coordinates.

The proposed equations have been used to generate the Cartesian coordi-

nates as functions of the curvilienar coordinates in a variety of surfaces.

The forcing functions in the PDE's, which distinguish one surface from the

other, depend on the equation of the surface in the form F(xy,z)=O. When a

surface is given only through a discrete set of data points, the method of

least squares and a Fourier method have been developed to fit the required

function F.

. A computer program has been developed for obtaining the curvilinear

* coordinates/grids in either a simply- or doubly-connected type of surface.

For complicated shapes, a segmentation approach is used in which the whole

* 3



surface is segmented into simpler shapes and the coordinates for each seg-

ment are separately generated. Application of the deveioped techniquEs to

surfaces having multiple saddle points, airplane surface complete with

fuselage and wings, and bodies of revolution, have been made.
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APPENDIX

-. A Synopsis of Elliptic PDE Models for Grid Generation *

Z. U. A. Warsi

'Department of Aerospace Engineering
Mississippi State University
Mississippi State, Mississippi 39762

Transmitted by Joe Thompson

ABSTRACT

This paper is devoted to an analytical comparison of the various elliptic partial-dif-
ferential-equation (PDE) models which are in current use for grid generation. These
comparisons, particularly between the equations from the Laplace-Poisson system and

S .'the equations from a Gaussian approach, have yielded useful expressions connecting
the 3D Laplacians and the surface Beltramians. This effort has specifically been
successful when the transverse coordinate leaving the surface is orthogonal to the
surface. Equations which are derivable from Cartesian-type Poisson equations and
those obtained by using the variational principle in surface coordinates have also been
considered.

1. INTRODUCTION

The problem of generating spatial coordinates by numerical methods is of
much importance in many branches of engineering mechanics. A review of
various methods of coordinate generation in both two- and three-dimensional
Euclidean spaces is available in Thompson, Warsi, and Mastin [1, 2].

This paper is exclusively directed to a collection and analytical compari-
sons of the various elliptic partial-differential-equation (PDE) models which
are curr-ntly in use for numerical coordinate generation.

The theory of grid generation does not depend on any set of so-called
conservation laws, and thus a variety of equations and methods of different
characters can be used to obtain the grids. Any consistent method, depending
either on the solution of PDEs or any algebraic method, can be used to obtain
intersecting trajectories in either 2D or 3D Euclidean space.1

*Research supported by the Air Force Office of Scientific Research under Crant AFOSR-85-0143.
The question of space comes into the picture when it is realized that all the metric coefficients
g,, cannot be selected arbitrarily. In fact, these metric coefficients must be so selected that a set

of second-order PDEs become satisfied. For details refer to Warsi (3].

APPLIED MATHFMATICS AND COMPUTATION 21:295-311 295

" % Z Elsevier Science Publishing Co., Inc.. 1987

52 Vanderbilt Ave., New York, NY 10017 ,0096..03/87/S03.50
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296 Z. U. A. WARSI

- •In light of the above discussion, any consistent set of PDEs is sufficient to
form a mathematical model. In bounded domains the most natural choice is
that of a mathematical model formed of elliptic PDEs. The simp'est set of
equations, which also yields the smoothest grid, consists of the Laplace
equations of the curvilnear coordinates in the Cartesian physical space. As a
next logical step, a set of Poisson equations can be selected so as to have a
degree of control of the distribution of grid lines. On inverting the,;e equations
a set of quasilinear PDEs are obtained [see Equations (2), (4)J.

After the development of the problem of grid generation through solving
the inverted forms of the Laplace and Poisson equations in 2D Euclidean
domains by Allen [41, Winslow [5], Chu [61, and Thompson et al. [7], a logical
extension was to use the same equations for 3D domains, as has been done by
Thompson and Mastin [8]. Parallel to the above-noted developments, Warsi
[3, 9, 10] proposed a Gaussian approach which basically generates surfaces
and thus can be used either for generating curvilinear coordinates in a given

• surface [11] or for generating 3D -oordinates by generating a series of
surfaces starting from the data on the given surfaces [9, 12]. The Gaussian
approach in fact depends on a manipulation of the formulae of Gauss for a
surface, and thus the resulting equations have the surface coordinates as the

% independent variables. This manipulation introduces the Beltramians of the
curvilinear coordinates and the sum of the principal curvatures of the surface
in a natural way. Since the formulae of Gauss for a surface hold true for any
allowable coordinate system introduced in the surface, the equations pro-
posed by Warsi [3, 9, 10] must also have the same properties. Further,
because of the use of Gauss formulae, the proposed equations are optimal in
the sense that the number of terms and the amount of information in the
equations is just sufficient for the generation of either surfaces or coordinates.

In this regard we can justifiably call a mathematical model "optimal" if it
can be reduced to the form of the proposed equations [cf. Equation (19a)].

Beside the Laplace-Poisson system and the Gaussian approach, we have
also derived the surface generating equations by the use of the variational
principle. The resulting equations are near optimal for the Gaussian system.

2. BASIC ELLIPTIC MODELS

Poisson Equations as Grid Generators
Since the publication of the 'ITM method [7], there has been extensive use

* of the Poisson equations in the physical r-space to generate both 2D and 3D
grids [2]. In practically all cases the main aim is to hav those equations in
which the computational coordinates appear as the independent variables,

.1

SO' M
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and therefore, the Poisson equations have to be inverted by making the
physical coordinates r = (x, y, z) the dependent variables. This inversion can
of course be carried out in a nontensoril manner by using the chain nile of
partial differentiation. However, it is much simpler to follow either of the
following two methods to attain the same result.

Method I: Inner multiplication of Equation (A2) z by g') and the use of

Equation (A4) results in

g'1 r + (V 2X")r = 0. (1)

Introducing the second-order differential operator

a2
.D gg ax axi

into Equation (1), we get

Dr+ g(v72 Xk)r -- 0, (2)

which is the desired equation in vector form in the computational plane.

Method I: In Equation (A3), writing 0 = r = (x, g, z) and again using
Equation (A4), we obtain the same equation (2).

To form a closed system of equations from Equation (2) one has to specify
the Laplacians V zxk in a suitable fashion. As described in Reference [3], a
general specification for the Laplacians is to write

v 2Xk = giipiP, k = 1,2 or k = 1,2,3, (3)

and then Equation (1) takes the form

g 'i(r~ay + P,'r~k) = 0. (4)

In Equation (3), the Pk = Pk are intended to be arbitrarily specified control

functions. Equating the right-hand sides of Equation (A4) and Equation (3),

2 Refer to the Appendix.

I



298 Z. U. A. WARSI

we have

p - = - g'jr,. (5)

Since g' are not arbitrary, we conclude that

for all values of i, j, k.

Recursive Property of P4 ,
:.. "We now impose the following requirement on Pk: If the coordinates are

such that their Laplacians vanish, i.e., 7 2zk = 0, then the control functions
Pik vanish individually for all indices i, j, k.

The importance of this requirement becomes clear by considering Equa-
tion (5) in which Fi are the Christoffel symbols. Thus, when the Laplacians

Vof the coordinates vanish, the right-hand side of Equation (5) vanishes as an
inner sum, but the left-hand side vanishes due to the imposed restriction of
"individual vanishing" of P4. for such coordinates. Denoting the coordinates
which satisfy the Laplace equations by x O), we then have

pk (0)ijo, i (O) 0, g = 0. (6)

We now consider those coordinates which satisfy the Poisson equations. In
these coordinates it is of interest to know the relation between the successive
P's under successive coordinate transformations. To this end, we consider two
successive allowable transformations denoted by x' ,, and ,, with Xio) as

those coordinates which satisfy the Laplace equation. Thus, in the m-i

coordinates, Equation (4) is
( 2 ar Or

(m- axi, ) dx ) J( -1)a p
0M-1) :.:

and in the x I coordinates

" a, a, r OK . ')xj xIM
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Using the transformation law (A j) in the form

A.= (in-) (rn-I)
e, 'M 1 dXpm) d x ()gi (9)

and the chain rule of partial differentiation of r in Equation (7), and
comparing the resulting equation with Equation (8), we get

( d~ ~ , X~k dxn
8X3 ax x' x(" Oxi

* ~ - - -,establishing a relation between the successive P 's. This is how I~ transform
from one coordinate system to the other. Also, using Equation (A9) in
Equation (10), we have

n rn ) $ x, x (M- I)

arn-I) (xin) x(in)

* Equation (11) establishes a relation between the P's and £ 's. In particular,
for mn = 1, Equation (10) reduces to Equation (63) of Reference [3].

From the recursive relation (10) it is a straightforward matter to show that
the transformation xi X~i -, x(2) of P4 is the same as the transformation
x'0) x x(2). The use of the chain rule for

dxhi) (x4)x

* and of the formula

Pd 2x i d~dx 0  x

dxI1 ax, dx'0 ax,0  x)dxI x 1

gives the required result.

Other Poisson System

- ~"*It is also possible to have equations in which the dependent variables are
non-Cartesian, e.g., cylindrical or spherical coordinates. In a paper by Chia
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et al. [13], the computational coordinates are assumed to satisfy a Poisson

system in the cylindrical coordinates.
To generalize this concept, let x' be a coordinate system on which the

V - coordinate system E' (e.g., cylindrical) is to be generated. From Equation
N 4 (A4),

1"vi- . r, (12)

and

,7 Xk= giir.k gijpk

=Pk (say). (13)

In Equation (12) both the metric coefficients and the Christoffel symbols are
already known in terms of the :V coordinate system. [If ' are the Cartesian

Ve coordinates, then Equation (12) is an identity.] From Equation (A3) we then
have

n --

a'a + p -X'rk, (14)

which are the transformed equations in the computational space. By using
Equation (AlO) we can also write Equation (14) as

C,- a'i + I 2g± 3 1 , (15)

gllc.. xa " axk

where

J -det a

Recently Fujii [14] used a Cartesian-type Poisson system between two
curvilinear coordinate systems. Let x' and jS be two curvilinear systems.

* Consider the Cartesian-type Poisson system

p = Pr (16)
p
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where x' is the curvilinear sde m on which the iP-system (e.g., spherical) is

to be generated. To obtain the inversion of Equation (16), we take the inner
'product of Equation (All) with 3wt/ax' to obtain

aY a_ i axi -a2, ai(
ax, ax, ai di,=  ail, ai, ax, :7

Setting k- n =1, k=n =2, k=n -3 andadding, we get

."~ az ax,

_ •-so that

Aa 2il ai
xa x, ax P  (18)

where

axi ax' 1

P -p 2p p

Equation (18) is the inverted form of Equation (16). Similarly to the case of
actual Poisson system, the functions PT are again the arbitrary specified
functions. Alternatively, we can also write

P -, ij ,

and then Pj' are the arbitrary control functions.

Beltramians as Grid Generators in Curved Surfaces
The problem of generating curvilinear coordinates in a surface has im-

portant applications in many branches of engineering. In this paper we are
interested only in one differential model which generates zoordinates in
surfaces embedded in R 3 and which reduces to Equation (2) in a natural way
when the surface degenerates into a plane. To achieve this aim, we consider
the formulae of Gauss [Equation (A12)] for a surface v = const. Inner
multiplication of Equation (A12) by G,g *" yields

Dr+ G,(A(V? )r, = n("R, (19a)

0.(
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." " . where

D = G,g"a,,, n(') - unit surface normal,

G, = g..g6 - (g.,) 2 , P, a, p cyclic, (19b)

R = G,g'fb,, = (k(P) + ),-,,,

b.# are the coefficients of the second fundamental form, and k(V), k() are the
principal curvatures at a point of the surface v = const. The Beltramians
¢A(')x' are defined by Equation (A14). It is readily seen that when the surface
v = const degenerates into a plane, then R = 0 and A. becomes the Laplace

% eoperator.
Equation (19a) can be used either for the generation of coordinates in a

. ' .. given surface or for the generation of 3D spatial coordinates between two

given surfaces. In the latter case it has been shown [10] that

I. R = Gga FRrX(r), X?,€) = n(r).r,,, (19c)

where r are the 3-space Christoffel symbols and x' is the transverse
coordinate.

Surface Coordinates
The surface-oriented generating system of equations, with the option of

arbitrary coordinate control, is now obtained by putting suitable restrictions
on the Beltranians appearing in Equation (19a). Similar to Equation (3), a
general specification of the Beltramians is

A2P)X 8 =gG a'PS 6 (20)

where P1, satisfy all the properties stated earlier, including Equations (10)
and (11) with F replaced by T.

To be specific, we take the surface x= const as the given surface and
* I X , q. Then Equation (19a) becomes

Lr = n(3 R, (21a)

where

ii. = 2at- 2g12ai, + gi 1D, + Pac+Qa ,.

p"2 + g1 ,

02-Il-2g1 2 F2

MI01
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3. SURFACE-GRID EQUATIONS FROM THE LAPLACIANS

In this section an attempt is made to establish a relation between the
surface equations derived by using the formulae of Gauss (Equation (19a)]
and the surface equations as derived from the inversions of the 3D Laplacians.

Let , 77, " be a general curvilinear coordinate system in R 3 such that 4, T1

form the coordinates in the surface = const, with " as the transverse
coordinate. Starting from Equation (B.3) of Reference [1] and using Equation
(A2), we get (refer to [11] for more details)

G' ' c (k (3 + k (31 r
O,, 2r= 3  k (22a)

S.where the differential operator 02 is

, •-- .=D +T o x (22b)

a
= + (Sa + C3 A2 xa) 3. (22c)

In (22b, c) the differential operator D defined in (19b) is

D g22,ff - 2g1 2D, + g 11 T,,I, (22d)

and

*= 2g 12 r 2 - -22F 11 , (22e)

where a = 1,2. Further

X = n.rr, (22g)

n being the unit surface normal vector on = const.
It must be emphasized that P], and T0 are the 3-space and 2-space

Christoffel symbols of the second kind respectively, and in general they are
not equal to each other at " = const. Thus, a comparison of Equations (19a)
and (22a) shows that the two sets of surface generators are entirely different.
However, it has been shown below that Equations (19a) and (22a) become

-1 - ,' . - -S.r ..
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* exactly the same equations under the following conditions:

(i) When the surface degenerates into a plane, in which case 71 ~ are the
* curvilinear coordinates (of any nature) in a plane.

(ii) When , iq are P'ny general coordinates in a surface, but (the
transverse coordinate) is r-thogornal to the surface.

Case (i) is patently straightforward. For case (ii), noting that is orthogo-
nal to the surface, we have

9 13 =9 23 =0, (23a)

and

Under A=~ (23b)

Udrthe conditions (23a) it is easy to show that

'5 7;, T;1,

where all Creek indices assume only two values (here 1,2). Thus S' 0, and
using (23b) we find that Equations (19a) and (23a) become the same
equations under the condition of orthogonality of the i-coordinate to the
surface = const- Further, under this condition the Beltrnians and the
Laplacians; of and -q are related through the following equations:

172 v 2  - L33 (24a)
933

*~~ 77~-~-- (24b)

Further,

7 r- k(3)+ k~P (24c)
933  3

* where

1 OG3
k(3) ~ G ki (24d)

2V03G
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N' and [referring to (19b)]

- = g11g - (g 12 )2.

4 SURFACE GENERATING EQUATIONS BASED ON A
VARIATIONAL PRINCIPLE

The use of a variational principle in the generation of both 2D and 3D
grids has already been considered by Brackbill and Saltzman [15, 16] and

Thompson and Warsi [17]. In this section we shall consider only the surface

grid generation problem based on the use of a variational principle. In essence

the following analysis is a unified approach to both the plane 2D and surface

- .2D cases from a variational viewpoint.
S - - ::-... - ..Let xi, x' be the coordinates in a surface. Consider the surface functional

IfV-- dXIdX2, (25)

' where C3 =91192-(g 12 )
2 and -0 is a specified function. The condition

8 = 0 then leads one to the Euler-Lagrange equations (using the summation

convention)

a 0, (26)
a x,3- . 8 8x,. 6

where x, (r = 1, 2,3) are the rectangular Cartesian coordinates, xO are the

curvilinear surface coordinates, and

ax , a2 ,XX a r ., a x 'j x " ' o d x ' d x , "

* From Equation (26), it is a purely algebraic problem to show that

Lx, -- - 1 8G3I (27a)
2 axy ax, j'

* where

4.; ,, + x (27b)

".1
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- Let flow p be a function of x,.Then expanding Equation (26) and using
-- Equation (27), we get

Lx, M N, (28a)

where

0 ( ac3 80 ao ac3\ G3 df Iad
'4.. I - --- 0 +- - j fl (28b)2\ ax,., axA , a "axJ a

On the other hand, if 0 is taken as

* -.. F/C 3 , (29a)

where F is still a function of x,.a, then in place of (28b), we have

1 ( ac3 aF +aG3 aF

2F 8,, xl aga~

1 OG3 ac3  G3  a IaF (2b
2G3 ax,.fl ax.8 F axft 8 X,(29b

* . The generating system (28a) with L defined in (27b) is similar to Equation
(19a). However, the selection of the form of the function 0 or F which yields
the right-hand side of Equation (19a) seems to be a difficult task. One simple
case is when -0 = 1. In this case the minimization of I implies [from (28a)]

Lx, = 0,

* and these are the equations for a minimal surface. The formr (29a) is of
interest because the choice

or

0=g" +9~ (30b)

is eqivalent to the "smoothness" problem in 2D plane coordinates, as has

I0I
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been shown in Reference [15]. It must, however, be stated that "smoothness"

of coordinates in a 2D plane problem is due to the satisfaction of the Laplace
equation. No such criterion is obvious on using either of the equations (30) in
(28a).

5. ANALYTICAL COMPARISONS AND CONCLUSIONS

Based on the foregoing analysis, we conclude as follows:

(a) The Laplace-Poisson system for 2D regions is optimal, since its inver-
sion coincides exactly with the Gaussian equations in a plane. [Note: In a

plane the right-hand side of Equation (19a) is zero and the Beltramians
S . .- become the Laplacians.]

(b) The inversion of the Laplace-Poisson system for 3D regions for a
constant coordinate value, viz., for a surface, does not reduce to the Gaussian
equations (cf. Section 3) except when the transverse coordinate is taken as
orthogonal to the surface [cf. Equation (22a)]. This implies that the Laplace-
Poisson system in 3D regions with three nonorthogonal coordinates is not
optimal, though it is a valid system. The extra terms (22f) should somehow be
managed, and in practice, 'dey are taken as part of the arbitrary specified
control functions. This means that the generated coordinates will assume a
distribution which- may not be to one's desire. It must, however, be again

P. .emphasized that the terms (22f) vanish when the transverse coordinate is
orthogonal to the surface. (In Reference [18], the author had to make other
assumptions besides orthogonality.)

(c) For the elliptic system described by Equation (15) the conclusions
discussed in (b) hold good.

(d) The generating system described by Equation (16) is a Cartesian-type
Poisson system. It looks difficult to assess its optimality in relation to the

-.F Gaussian equations.

* . (e) The equations derived from the variational principle, viz., (28), are
nearly optimal, though it looks difficult to find the appropriate function 0
which makes the right hand side of (28a) the same as that of Equation (19a).

LAPPENDIX
The following formulae have been used in the main text of the paper and

can be found in any standard text on tensors, e.g., [19], [20].
In an Euclidean space R" (though here we are concerned only with R or

R 3), endowed with the curvilinear coordinates x', the first partial derivatives
S''',

.
S].. ,.
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of the covariant basis vectors a, are expressible as linear functions of a,:

Oa,

dx a (Al)

where r', are the Christoffel symbols of the second kind. Here, and in what
follows, a repeated lower and upper index will always imply summation over
the range of index values. Equation (Al) can alternatively he written as

r rI ,r.k, (A2)

where a comma preceding an index implies a partial derivative, and r is the
position vector, viz.,

r =(x, y,z) or (x,, x, x,).

The Laplacian of a scalar 0 is given by

- V . _g (.,,- rk '.). (A)

From (A3), we have

x7 2 g uifk. (A4)

The quantities g'j and gi are respectively the contravariant and covariant
components of the metric tensor, and the two are related as

•+gp,-g,s - gp,,g-,

g

where (i, p, r) and (j, n, s) are to be taken in the cyclic permutations of
(1,2,3), and

0
g = det(g,,).

Let x' and E' be two allowable coordinate systems in a Euclidean space
such that each of the functions i' = 0'(x i ) and x' - ,(iJ) define a transfor-
mation with

J=det a:]*O' 0, -det x 0* 0.

O -

6
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On transformation of coordinates from x' to i', we have

* g
g= 7 g-= 7T, (A5)

adx'
o= *7 O (A6)

* * -. = --- --- g, ,
I, ' d i p  O -i l

1 g = aj (A7);~Y ax] x

r .= ,'Tdip , ax! "z a i a . ,,
7,-7 dx dkx diX - - -, + , (A)

dxk, x,,-- F.'dx' F'k dx-'- (AS)

The first partial derivatives of x with respect to i are given by

axi Ci

where

d, di air aI" (Ao)

and (i, s, n) and (j, r, k) are cyclic permutations of (1,2,3).
The second partial derivatives of one set of coordinates are related with

* those of the other set as

2x' a2i' Ox, dxt dxj

We now consider a surface embedded in R'. All tensor indices associated
with a surface will be denoted by Greek letters (except the letter v). In
contrast to Equation (A2), the formula of Gauss is

r..a =T.r., + n 'b., (A12)

I

C
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' where T! are the surface Christoffel symbols of the second kind, b, are the
coefficients of the second fundamental form, and n") is the unit surface
rormal on the surface v = const. The values of v and other Greek indices
follow the following scheme:

P = 1: Greek indices a, /3, etc. assume values 2 and 3.

v = 2: Greek indices a, /3, etc. assume values 3 and 1.

v = 3: Greek indices a, /3, etc. assume values I and 2.

The Beltramian of a scalar 0 is given by

Sr~ g Ts(A13)
2 6.

", From (A13), we have

fl afTa. (A14)

For a surface the formulae (A5)-(A9) are equally applicable with proper

choice of indices and replacing r by T.
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